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Surface skewness is a statistical measure of the vertical asymmetry of the air-sea 
interface - exemplified by the sharp crests and rounded troughs of surface gravity 
waves. Some authors have proposed a constant ratio between surface skewness and 
the ‘significant slope’ of the waves. Here it is shown theoretically that no such simple 
relation is to be expected. 

Wave records are of at least two different types; Eulerian (as made with a fixed 
probe) or Lagrangian (as with a free-floating buoy). The corresponding statistical 
properties are examined. At first sight it might appear that the degree of skewness 
in corresponding records would be different. However it is shown that to lowest order 
the skewness is invariant ; only the apparent mean level is different, at second order. 

1. Introduction 
With the advent of radar altimetry from orbiting satellites, and its application to 

the measurement of ocean waves, currents and surface winds, certain questions 
concerning the statistical properties of surface waves have come increasingly to the 
fore. Among these is the magnitude of the surface ‘skewness’, defined as follows. If 
we suppose the vertical displacement 5 of the ocean surface to be recorded as a 
function of the time t at some fixed location, then, in a given sea state, the elevation 
5 will have a probability density p ( y ) ,  say. For waves of small slopes, p(6)  is known 
to be nearly Gaussian (see for example Longuet-Higgins 1957). However, in steep 
waves, including sometimes very short gravity or capillary waves, p ( g )  becomes 
asymmetric about its mean level C = 0 and may have an appreciable skewness A,, 
as defined in terms of the second and third cumulants of p ( [ ) .  One familiar 
manifestation of surface skewness is the up-down asymmetry of a steep gravity wave, 
in which the crests are more peaked, the troughs flatter or more rounded.? 

The value of A, can be related to the nonlinear dynamics of free surface waves. 
Phillips (1961) first showed theoretically that A, was of the same order of magnitude 
as the r.m.8. surface slope. Longuet-Higgins (1963) gave a detailed theory, deriving 
the skewness and kurtosis of p(5) in terms of the underlying frequency spectrum 
of 5. However, in some more recent papers (Walsh 1979; Huang & Long 1980; Huang 
et al. 1981) there have been suggestions, made on empirical grounds, that there exists 
a simple linear relationship between A, and a quantity 8 ,  the ‘significant slope’, 
defined in terms of the frequency spectrum of 5. Thus Huang & Long (1980) proposed 
that 

A, = 8x8. (1.1) 

t This type of asymmetry is to be distinguished from the horizontal asymmetry in some 
wind waves, which is related to the distribution of the surface slopes (see Longuet-Higgins 1982). 
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Such a relation would indeed be convenient. However, one of the conclusions of the 
present paper is that no such simple relation exists. 

In  the first part of the paper, which is theoretical, we introduce a simple model 
of the wavefield, appropriate to long-crested waves with a narrow frequency 
spectrum. In this case it is easy to derive a simple relation between the skewness and 
the significant slope. The result (2.16) is shown in $3  to be consistent with the more 
general theory of Longuet-Higgins (1963) after correction of an elusive factor. The 
more general theory is then used to investigate the effects of finite spectral bandwidth 
and varying shape of the frequency spectrum, on the ratio between A, and s. The 
relation is found not to be unique. In $4 we review recent observations of A, in the 
light of our theoretical results. 

In  situ measurements of waves are often made with different types of instrument, 
giving rise to wave records of either Eulerian or Lagrangian type. The latter, for 
example, would include measurements with a free-floating buoy. Are there any 
differences in the skewness as evidenced by different types of measurement ? This 
question is investigated in $55 and 6. In $5 we obtain a general relation, correct to 
second order, between the two types of measurement ((5.9)) and apply it to the 
narrow-band spectral model. In $6 we consider a more general case. The conclusions 
are summarized in $ 7 .  

2. Model for a narrow spectrum 
Suppose first that the waves are long-crested and have a narrow frequency 

spectrum, in the sense of Longuet-Higgins (1957). Choosing the horizontal x-axis in 
the direction of propagation we may write 

(2.1) g(x,t) = a cosO+ia2k cos28+O(a3k2), 

where a represents the local wave amplitude, k is a fixed wavenumber and 8 is the 
phase function 

e = kx-at+a. (2.2) 

Here u is the (fixed) radian frequency and a and E vary slowly with x and t .  The first 
term on the right of (2.1) represents a linear, sinusoidal wave, of slowly varying 
amplitude and phase. The second term represents the nonlinear correction appropriate 
to a deep-water gravity wave of uniform amplitude (see for example Lamb 1932, 
p. 417). 

By linear theory, and for a narrow spectrum, the distribution of wave heights 2a 
is Rayleigh: 

where 6 is the r.m.8. value of a. We note that, even after the addition of the second, 
nonlinear term on the right of (2.1), the crest-to-trough wave height is still equal to 
2a, if we neglect quantities of order a3k2. We shall assume that a is distributed 
according to (2.3) in the nonlinear case also, and that the phase 6 is distributed 
uniformly in (0,2x), as in narrowband linear theory (see Longuet-Higgins 1963). Thus 
the joint density of a and 8 is 
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From (2.1) and (2.4) we may at once calculate the surface skewness. The rth 
moments y, being defined by 

we easily find y1 = 0 and 

Hence the cumulants K, are given by K~ = 0 and 

to the present approximation. The coefficient of skewness is then 

and the coefficient of kurtosis is 

A, = 2 = 0, (2-9) 
K2 

to this order. 
These results should agree with the expressions for the cumulants given by 

Longuet-Higgins (1963) for a general long-crested frequency spectrum F(a). These 
are (after correction? of a factor t in his equation (3.7)) 

K1 = 0, (2.10) 
rco 

K, = J P(a)da ,  
0 

K~ = 3 JOm s,” min ( k ,  k’)P(a) F(a’) dada’. 

(2.1 1) 

(2.12) 

K, was of higher order, as noted. If in (2.11) and (2.12) we introduce the narrow 
spectrum 

P(a) = +a26(a-ao), (2.13) 

where 6 denotes the Dirac delta function, we retrieve precisely (2.8). 
Consider now the relation of the skewness to the ‘significant slope’ s. This was 

defined by Huang & Long (1980) as 

s = QLP (2.14) 

where a bar denotes the r.m.8. value and L, is the wavelength corresponding to the 
peak in the spectrum. So in our model 

(2.15) 

and from (2.8) we have the relation 

As = ~ X S .  (2.16) 

t See Bitner (1976) and Bitner-Gregersen (1980). There should be a factor 4 multiplying the 
right-hand sides of equations (3.7), (3.9), (3.12) and (3.17). Hence the numerical factors in (3.14), 
(3.15) and (3.16) should be 3, 6 and 6 respectively. The ratio A,/L in (3.24), (3.25) and table 1 is 
unaflected. 
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Lastly, in this section, we note that by (2.1) the r.m.8. surface slope cz is given by 

<: = ?j(iik)2, (2.17) 

so that from (2.7) A, = 3cz. (2.18) 

This can also be written <c3> = 3(5%S29. (2.19) 

This is the correct form? of a relation first given by Phillips (1961, p. 154) in which 
the factor on the right was given as t .  

3. Effects of finite bandwidth 
We now generalize some of the results of 52 to seas that are still long-crested, that 

is to say unidirectional, but have a non-zero bandwidth. For such waves, (2.10)-(2.12) 
will apply, and from the definitions of A, and s given above we have 

where 

and 

A, = 121cs-, I ,  
G 

I ,  = up jOw F(u) du 

I2 = s,” { s,” a2F(u)  du} F(u’) du’. (3.3) 

In  (3.3) we used the dispersion relation az = gk, and in (3.2) the relation ci = 21cg/Lp 
for the radian frequency up at the spectral peak. 

We shall now evaluate the factor 12/1: on the right of (3.1) for some typical wave 
spectra. 

Consider first spectra of the special form 

uu-n, F(u) = ’ up} 
u < u p  ’ (3.4) 

n being a constant greater than 3. (The case n = 5 corresponds to the Phillips 
spectrum, Mark I). Substituting into (3.1) we find 

6(n- 1 )  
n-2 

A, = ~ RS. (3.5) 

This is the correct version of equation (5.9) of Huang et al. (1983) and the result, for 
n = 5,  given previously by Jackson (1979). When n + m ,  (3.5) reduces to (2.16), as 
would be expected. When n = 5 (and only in this case) (3.5) agrees with the empirical 
relation (1 .1)  given by Huang & Long (1980). 

To assess roughly the dependence of A,/s upon the spectral width we may introduce 
the spectral-width parameter v defined by 

v2 = 11201722- 1 
m; 

(cf. Longuet-Higgins 1980)) where m, denotes the rth spectral moment 
r m  

m, = J uf F(u)du. 

t We are indebted to Professor Phillips for verifying this statement. 

0 
(3-7) 
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n V & / X S  

4 0.5774 9 
5 0.3536 8 
6 0.2582 7.5 

10 0.1260 6.75 
100 0.0102 6.06 
00 0 6 

TABLE 1. Dimensionless parameters v and h 3 / m  for the ideal spectrum (3.4) 

(Note that mo = pz).  From (3.4), (3.6) and (3.7) we find 

1 
(n- 1) (n-3)' 

v2 = 

Table 1 gives the results for some integer values of n. It suggests that, as the spectral 
width decreases, so also does the ratio A,/s. 

Next consider a generalized form of the Pierson-Moskowitz (P-M) spectrum used 
successfully by Liu (1983, 1985) : 

F(a) = ag-n e-(fl/''Im, (3.9) 

which has a peak at a = up = B(rn/n)l/". When m = 4 and n = 5 (3.9) gives the 
well-known P-M spectrum, while for m = 4 and n arbitrary we obtain the Wallops 
spectrum (Huang et al. 1981). Lastly when n = 5 and m is arbitrary we obtain the 
spectrum used by Longuet-Higgins (1980). 

From (3.7) we find, when r < (n- l) ,  

and so from (3.8) v z = r ( ~ ) r r ~ ) / r ( ~ ) L  

(3.10) 

(3.11) 

Furthermore from (3.1) we find (see Appendix) that 

2(n-2) n-1 + 1 ; $)/rrGy (3.12) 
A , = ~ A S ( ~ ~ ( - - - )  A a n zlm 2Fl( l ,y;-  

m 

where 2F1 is a generalized hypergeometric function, from which numerical values may 
readily be computed. 

Results for various values of n and m are given in table 2. It can be clearly seen 
that the ratio of skewness to significant slope varies widely, is crucially dependent 
on the form of the wave spectrum and is not simply a function of the bandwidth 
parameter v .  

We note that (3.1) and (3.3) apply only to long-crested waves. However, for a more 
general three-dimensional spectrum i t  has been shown that the coefficient of skewness 

(3.13) 
A, satisfies 

0.44 L, < A, < 1 .OlL,, 

where L, denotes the corresponding skewness for a long-crested sea (Longuet-Higgins 
1963, pp. 469470). The proof of this result is unaffected by the presence of a factor + in equation (3.7)*.t 

f We use a star * to denote equation numbers in Longuet-Higgins (1963). 
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~~ ~ ~ ~~ ~~ 

V h/ns 

4 5 6 I 4 5 6 7 

0.64 0.62 0.61 0.60 3.66 2.16 1.41 0.98 4 
4 0.42 0.41 0.39 0.39 6.96 4.33 2.88 2.03 
6 0.33 0.31 0.30 0.29 10.26 6.95 4.81 3.46 
7 0.28 0.26 0.25 0.24 12.66 9.51 6.97 5.17 

TABLE 2. Values of v and A 3 / x s  for the generalized P-M spectrum (3.9) 

x 

4. Discussion 
Consider first the observations reported by Huang & Long (1980). In their figure 6 

(where A, is plotted against s) the data fall mainly into two groups: the field 
observations, for which 0 < s < 0.02, and the laboratory data, for which 
0.02 < 5 < 0.04. The former show considerably more scatter. Thus their empirical 
result (1 .1)  is probably weighted in favour of the laboratory measurements. The field 
data alone would not suggest such a definite relationship. 

We note that a similar scatter in field data is reported by McClain, Chen & Hart 
(1982, figure 3). This certainly supports our conclusion that the relation (1.1) is not 
unique. 

There may also be systematic differences between field and laboratory data arising 
from different ranges of the parameter u*/c (where u* is the wind friction velocity 
and c the phase speed of the dominant waves). For waves in the open ocean U*/C is 
typically of order 0.1, compared with values of order 1 for wind waves in the 
laboratory (Phillips 1977, p. 129). The laboratory data of Huang & Long (1980) 
include results with u*/c > 0.6; below this value their measurements of skewness are 
considerably more scattered. 

A non-Gaussian model of the sea surface somewhat similar to that in 92 above was 
proposed by Huang et al. (1983), except that they include a term +z2k in (2.1), as well 
as higher-order terms. Such a term, however, does not arise dynamically in deep 
water; it would correspond to a local change in the mean surface level, i.e. a ‘wave 
set-up’. Although such terms are significant in shallow water (Longuet-Higgins & 
Stewart 1962,1964), nevertheless in deep water they become negligible when Ak 4 k, 
where Ak is the spectral bandwidth, that is when the spectrum is narrow and there 
are many waves in a group -the situation considered in $2. 

5. Lagrangian measurements: narrow spectrum 
In  determining the skewness of the surface elevation from instrumental records, 

some attention must be paid to the method of measurement, since different methods 
may give apparently different answers. 

The definition of surface skewness given in 92 applies directly to measurements 
made with a fixed probe or wave staff. However an alternative method of observation 
is often used, in which the vertical displacement is derived by twice integrating the 
vertical acceleration in a free, or almost free, floating buoy. To first order in ak the 
two wave records are equivalent, but to second order, which is required for an 
assessment of the skewness, the records are different, as we shall show. 

Note first that an irrotational deep-water Stokes wave can be considered as the 
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t 

\ !azk 

FIGURE 1.  Sketch of orbital motion in a steep, irrotational wave, when the frame of reference moves 
with the Stokes drift velocity for surface particles. The broken curve corresponds to linear theory. 

sum of a rotational Gerstner wave (Lamb 1932, section 251) in which the particles 
describe perfectly circular orbits, plus a steady, second-order Stokes drift. The 
superposition of the two motions is accurate to third order in the wave steepness (see 
Dubreil-Jacotin 1934). Hence in a Stokes wave each particle at  the surface describes 
a circular path, if seen in a frame of reference moving with the steady drift; see 
figure 1. Moreover, its orbital velocity in this circular path is constant (see Lamb 
1932). So apparently there is no asymmetry in its vertical displacement, to third 
order, and one might expect the corresponding skewness in the wave record to be 
small. 

To analyse the situation further, let z be the vertical coordinate and u, w the 
horizontal and vertical components of the velocity. We shall suppose that 

6 =  y p + y 2 p +  ... , (5.1) 

where y is a small parameter proportional to the maximum surface slope, and we shall 
use suffices L and E to denote quantities following a particle or with fixed spatial 
coordinates, respectively. Then the horizontal displacement of a particle is given by 

and on expanding in a Taylor series about x, we find 

Thus to first order in y we have simply 

A x =  udt. I 
In a similar way the kinematic surface condition leads to 

-- - w  a6 
at 

correct to first order, and 

correct to order y2 .  But, to first order, 

(5.4) 

(5.7) 
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Since the motion is irrotational to first order at least, awlax may be replaced by aulaz. 
Hence 

Combining this result with (5.5) we find, correct to second order, that 

where Ax is given by (5.4). This relates the vertical displacement CL as measured by 
a free-floating buoy to that measured by a fixed probe. 

The relation (5.9) can be applied in the first place to the narrowband model of $2. 
For, associated with the first-order terms a cos.8 there is a horizontal velocity 

u = aa ekz C O S ~ .  (5.10) 

So on evaluating the second term in (5.9) at  z = 0 we obtain 

CL = CE+a2k sin28+O(a3k2). (5.11) 

From (2.1) this is 6, = a cos 8 + !ja2k, (5.12) 

correct to second order. In  other words the motion is purely sinusoidal, apart from 
a term which varies only on the longer timescale of the wave groups. The latter 
represents a displaced mean level, midway between the level of crest and trough. The 
Eulerian mean level being taken as zero, it follows that this local mean level must 
be equal to the amplitude of the second harmonic in CE, that is h 2 k ;  see figure 1. 

Physically, the reason for this displaced mean is that a particle in the free surface 
lingers for longer near the wave crests, where it is moving forwards with the wave, 
than it does in the wave troughs, where its motion is opposite to the phase speed. 
Hence, Lagrangian averages will tend to overweight crest values and under- 
weight trough values, relative to Eulerian averages. A first consequence is that the 
Lagrangian mean surface level is higher than the Eu1erian.t 

To calculate the moments pr of CL from (5.12) we have, to lowest order, 

p1 = +ti2k, p2 = +Z2, p3 = %ti4k. (5.13) 

Hence the cumulants are given by 

K~ = fa2,%, K~ = !jti2, K,  = f$k. (5.14) 

Remarkably, although the first cumulant K~ is now positive, the second and third 
cumulants are the same as for cE (see (2.7)). Hence the coefficient of skewness 
h, = K 3 / 4  is the same ! 

A qualitative explanation is as follows. In a wavetrain of uniform height the 
vertical displacement is indeed symmetric about its mean value; but that mean value 
is displaced from zero by a second-order amount depending on the wave steepness. 
Now even in a narrowband spectrum, the waves are not of uniform height. So the 
‘tails ’ of the distribution, which are due mainly to the larger waves, are shifted more 
in a positive sense, relative to the average, than is the region in the centre, which 

For uniform waves, this effect was noticed independently by I. D. James (personal 
communication). 
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depends partly on the lower waves. But the third moment of the distribution is 
influenced by the 'tails' more than is the mean value. The net effect is to produce 
a positive coefficient of skewness. 

6. Lagrangian measurements in random wavefields 
Equation (5.9) can easily be generalized to three dimensions to give 

where w is the y-component of the particle velocity, and this may be used to evaluate 
the skewness in a random wavefield. 

Adopting the approach of Longuet-Higgins (1963), in which the first-order motion 
is represented by 

N 
6 = af case, e, = k,*x--a,t+e,,, 

f-1 

the phases E~ being random, we find 

where kt = I k, I. To obtain CL we have only to add the above terms to the right-hand 
side of the (corrected) equation (3.7)* for a). Following through the argument of 
that section we find that, to a second approximation, 

5L = E a,E,+X a*,&&-,, (6.4) 
d g.5 

where 1 (i = 1,2, . . . , N )  

0 (i = ( N +  l),  ..., 2N), 
a* ={  

as before, but now 

+(hi, k,${B;,+B[,- k,*k,+ (k,+ k,) (k, k,)-i}, when i , j  = 1,2, .. ., N ,  

(6.6) 
)-+ {B<j - Bl j  - kf*k, + (k, + 4) (kg kj)+ kg kj) 

when i, j, = ( N +  l),  ..., 2N, 
. 

0 otherwise. 

In  (6.4) the 6, denote independent random variables, a, cose, or -a, sine,. The 
constants B l ,  and q, are functions of k, and k5 given by equations (3.8)*. When 
i = j ,  then B[ and B;, both vanish and we have 

a** = fk, (i = 1,2, ..., 2N). (6.7) 

The expressions for the cumulants then become, in integral form, 
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where E(k) denotes the two-dimensional spectral density and K ( k , k )  is the same 
function as given in (3.12)*. 

In the one-dimensional case these equations reduce to 

k F ( a )  du ( k  = a2/g), 

ra, 
K~ = J F(a)da, 

0 

K~ = 3 JOw lom min ( k ,  k’) F ( a )  F(a’) dada’. 

The only difference between these expressions and those for the Eulerian cumulants, 
(2.9)-(2.1 i ) ,  lies in the value of K1. Whereas for the Eulerian cumulants K~ = 0 (which 
is a consequence of the choice of origin for z ) ,  in the Lagrangian case K~ is positive, 
on account of the second harmonic in CE, which raises both crests and troughs by 
an equal, second-order quantity. 

However, the non-zero value of K1 has no effect upon the values of K2 and K ~ .  Hence 
the measured skewness is unaltered, just as in the narrowband case (95). 

7. Conclusions 
We have shown by a simple model that in a narrowband, unidirectional sea the 

skewness A, and the ‘significant slope’s are related by (2.16), not (l . i) ,  and that in 
a broader spectrum the ratio A , / m  may have a rather wide range of values, as shown 
in table 3. This conclusion is consonant with the available field data ($4) and there 
may be reasons why laboratory measurements are not truly representative of ocean 
wave conditions. 

We have derived a general relation (5.9) between the surface elevation 6 ,  as 
measured in an Eulerian sense, say by a fixed probe, and the corresponding 
Lagrangian elevation cL as recorded by an ideal small float. This relation is 
generalized in (6.1). When the statistical properties of CE and &, are compared, it is 
found, contrary to expectation, that the skewness and the variance in the two records 
are equal, although the apparent mean level in the Lagrangian record is slightly 
raised. Thus the relation between A, and s is the same. The change in mean level, 
which would of course not be noticed by an accelerometer, is due to the fact that 
particles in the surface remain somewhat longer near the crests of the waves than 
in the troughs. 

In practice, Lagrangian wave observations are often made by means of accelerometer 
buoys which have a response falling off at  low frequencies. For our theoretical 
conclusions to apply to such measurements, i t  appears necessary that the frequency 
range should include at least the group frequencies. The possible effect of mooring 
forces on the buoy motions is left for a separate study. 

Appendix. Derivation of equation (3.12) 
On substituting = 6 ,  (/?/a’)m = 7 in (2.12) and (3.9) we have 
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This may be written 

where T(z, 7) is the incomplete gamma function : 

r(z, 7) = JTW e-t P-l dt. (A 3)  

Equation (A 2)  may be further simplified by using a result from Erddyi et al. (1953, 
vol. II, p. 138), to obtain 

where 2Fl is a generalized hypergeometric function. On using the definitions of As in 
(2.8), K~ in (2.11) and a in (2.14), together with crp = B(rn/n)'/" and K~ = ,u2 = 0, given 
by (3.10), we obtain equation (3.12). 

In  the special case m = n- 1 (which for n = 5 gives the P-M spectrum) i t  is possible 
to reduce (3.12) by use of the relations 

where 

(Erddyi et al. 1953, vol. I, p. 87). This leads to 

However, as n-+ 00 (A 7 )  does not reduce to (3.12) owing to non-uniform convergence 
in the narrowband case. In  the special case considered here, we have also from (3.11) 
that 

n - 3  n - 2  
v2 = r(;;.i)/r(;l=i>-l. 

Some numerical values derived from (A 7) and (A 8) are shown in table 3. In  this 
case the ratio AJns does not differ greatly from 7 .  But in the more general case 
(table 2)  the variation is considerably greater. 

We thank David Carter for suggesting the topic of this paper, and Peter Challenor, 
David Evans, Trevor Guymer and David Webb for useful discussions. Financial 

n V 

4 0.679 7.103 
5 0.425 6.965 
6 0.314 6.952 

10 0.157 7.072 
100 0.013 7.463 
m 0 7.520 

TABLE 3. Parameters v and A,/xs for the spectrum (3.9), when m = n-1 
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